Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач

Интегрирование по частям Пример Найти интеграл Криволинейные интегралы первого рода Физические приложения двойных интегралов Вычислить поверхностный интеграл Найти разложение в ряд Фурье функции


Математический анализ Вычислить интеграл

Пример 8. Найти интеграл .

Решение. Для того, чтобы избавиться от иррациональности в подынтегральном выражении, нужно сделать следующую замену:

Тогда данный интеграл запишем в виде:

Подынтегральное выражение представляет собой неправильную дробь, в которой нужно выделить целую часть путем деления многочлен на многочлен: .

Возвращаясь к интегралу, получим:

Физические приложения двойных интегралов

Масса и статические моменты пластины
Предположим, что плоская пластина изготовлена из неоднородного материала и занимает область R в плоскости Oxy. Пусть плотность пластины в точке (x, y) в области R равна . Тогда масса пластины выражается через двойной интеграл в виде
Статический момент пластины относительно оси Ox определяется формулой
Аналогично находится статический момент пластины относительно оси Oy :
Координаты центра масс пластины, занимающей область R в плоскости Oxy с плотностью, распределенной по закону , описываются формулами
Для однородной пластины с плотностью для всех (x, y) в области R центр масс определяется только формой области и называется центроидом.

Моменты инерции пластины
Момент инерции пластины относительно оси Ox выражается формулой
Аналогично вычисляется момент инерции пластины относительно оси Oy :
Полярный момент инерции пластины равен
Заряд пластины
Предположим, что электрический заряд распределен по области R в плоскости Oxy и его плотность распределения задана функцией . Тогда полный заряд пластины Q определяется выражением
Среднее значение функции
Приведем также формулу дял расчета среднего значения некоторой распределенной величины. Пусть f (x,y) является непрерывной функцией в замкнутой области R в плоскости Oxy. Среднее значение функции μ функции f (x,y) в области R определяется формулой

где − площадь области интегрирования R.

Пример 1 Определить координаты центра тяжести однородной пластины, образованной параболами и .


Решение.
Заданная пластина имеет форму, показанную на рисунке 1. Поскольку пластина однородна, то можно положить . Тогда масса пластины равна
     
Найдем теперь статические моменты относительно осей Ox и Oy.
     
Вычисляем координаты центра масс.
     
Рис.1
Рис.2


Пример 2 Вычислить моменты инерции треугольника, ограниченного прямыми (рисунок 2) и имеющего плотность .


Решение.
Найдем момент инерции пластины относительно оси Ox.
     
Аналогично вычислим момент инерции относительно оси Oy.
     

Пример 3 Электрический заряд по площади диска таким образом, что его поверхностная плотность равна . Вычислить полный заряд диска.


Решение.
В полярных координатах область, занятая диском, описывается множеством . Полный заряд будет равен

     

Физические приложения криволинейных интегралов

С помощью криволинейных интегралов вычисляются

Рассмотрим эти приложения более подробно с примерами.

Масса кривой
Предположим, что кусок проволоки описывается некоторой пространственной кривой C. Пусть масса распределена вдоль этой кривой с плотностью ρ (x,y,z). Тогда общая масса кривой выражается через криволинейный интеграл первого рода
Если кривая C задана в параметрическом виде с помощью векторной функции , то ее масса описывается формулой
В случае плоской кривой, заданной в плоскости Oxy, масса определяется как
или в параметрической форме
Центр масс и моменты инерции кривой
Пусть снова кусок проволоки описывается некоторой кривой C, а распределение массы вдоль кривой задано непрерывной функцией плотности ρ (x,y,z). Тогда координаты центра масс кривой определяются формулами
где
− так называемые моменты первого порядка.

Моменты инерции относительно осей Ox, Oy и Oz определяются формулами
Работа поля
Работа при перемещении тела в силовом поле вдоль кривой C выражается через криволинейный интеграл второго рода
где − сила, действующая на тело, − единичный касательный вектор (рисунок 1). Обозначение означает скалярное произведение векторов и .

Заметим, что силовое поле не обязательно является причиной движения тела. Тело может двигаться под действием другой силы. В таком случае работа силы иногда может оказаться отрицательной.

Если векторное поля задано в координатной форме в виде
то работа поля вычисляется по формуле
В частном случае, когда тело двигается вдоль плоской кривой C в плоскости Oxy, справедлива формула
где .

Если траектория движения C определена через параметр t (t часто означает время), то формула для вычисления работы принимает вид
где t изменяется в интервале от α до β.

Если векторное поле потенциально, то работа по перемещению тела из точки A в точку B выражается формулой
где − потенциал поля.
Рис.1
Рис.2
Закон Ампера
Криволинейный интеграл от магнитного поля с индукцией вдоль замкнутого контура C пропорционален полному току, протекающему через область, ограниченную контуром C (рисунок 2). Это выражается формулой
где - магнитная проницаемость ваккуума, равная Н/м.

Независимость криволинейных интегралов от пути интегрирования Пример Вычислить криволинейный интеграл для двух путей интегрирования:

Закон Фарадея Электродвижущая сила наведенная в замкнутом контуре C, равна скорости изменения магнитного потока, проходящего через данный контур

Пример Тело массой m брошено под углом к горизонту α с начальной скоростью v0. Вычислить работу силы притяжения за время движения тела до момента соударения с землей.

Найти массу цилиндрической оболочки, заданной параметрически в виде , где (рисунок 2 выше). Плотность оболочки определяется функцией .

 Док-во. Необходимость. Пусть $. Для "e>0 $d: 0<| x-a |<d Þ| f(x)-b |<e. Но тогда | f(x)-b |<e и при 0< x-a <d(Þ0< x< a +d), и при -d< x-a <0(Þa -d< x<0), т.е. выполняются условия определений , , следовательно, оба односторонние предела существуют и равны между собой.

 Достаточность. Пусть $, $. Возьмём "e>0. Первый предел обеспечивает существование d1: a< x < a +d1Þ| f(x)-b |<e. Аналогично второй предел обеспечивает существование d2: a -d2< x<0Þ| f(x)-b |<e. Выберем d<min{d1, d2}. Тогда при 0<| x-a |<d для x>a будет выполняться первое неравенство, для всех x<a - второе. В обоих случаях |f(x)-b |<e, т.е. $, и этот предел равен числу b.

Задание 3. Самостоятельно сформулировать определение односторонних пределов на языке последовательностей. 4.Сформулировать условие отсутствия односторонних пределов.

4.4.3. Бесконечно большие функции.

Опр.4.4.8. Функция f(x) называется бесконечно большой при х®а, если .

Обозначение: .

Опр.4.4.9. Функция f(x) называется положительной бесконечно большой при х®а, если .

Опр.4.4.9. Функция f(x) называется отрицательной бесконечно большой при х®а, если .

Такие же определения даются для случаев х®а+0, х®а-0, х®+¥, х®-¥.

Пример:  бесконечно большая при х®0, положительная бесконечно большая при х®+0, отрицательная бесконечно большая при х®-0. Коротко эти свойства записываются с применением символики пределов так: , , . Тем не менее, когда мы в дальнейшем будем говорить "пусть f(x) имеет предел при ", всегда будем предполагать, что этот предел конечен (противный случай будет специально подчёркиваться).

Вычисление определенного интеграла

Пример 9. Вычислить интеграл .

Решение. Для того, чтобы вычислить данный интеграл, воспользуемся основной тригонометрической заменой:

 

Так как данный интеграл является определенным, то при замене переменной , меняются пределы интегрирования:

.

На отрезке  по переменной t функция  непрерывно дифференцируема, монотонна и в границах его принимает значения границ отрезка  по переменной x. Следовательно, выбранная замена переменной правомерна. Получаем:

.


Решение дифференциальных уравнений с помощью рядов Фурье