Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач

Интегрирование по частям Пример Найти интеграл Криволинейные интегралы первого рода Физические приложения двойных интегралов Вычислить поверхностный интеграл Найти разложение в ряд Фурье функции


Математический анализ Вычислить интеграл

Пример 6. Найти интеграл .

Решение. С помощью формул тригонометрии: , такие подынтегральные выражения приводятся к рациональным выражениям, зависящим от . Получаем:

,

а интеграл приобретает следующий вид:

  .

Применив универсальную тригонометрическую замену

, получим интеграл .

Возвратившись к прежней переменной, имеем:

.

Пример 7 Найти площадь области, ограниченной гиперболой , осью Ox и вертикальными прямыми x = 1, x = 2 (рисунок 7).


Решение.
Вычислим площадь с помощью криволинейного интеграла.
     
Найдем отдельно каждый из интегралов.
     
Следовательно, плошадь заданной области равна
     

Пример 8 Найти площадь области, ограниченной эллипсом, заданным параметрически в виде (рисунок 8).


Решение.
1) Применим сначала формулу . Получаем
     
Площадь данной фигуры можно вычислить, используя также и две другие формулы:
Рис.8
Рис.9

 

Пример 9 Найти объем тела, образованного вращением вокруг оси Ox области R, ограниченной кривой , и прямыми x = 0, x = , y = 0.


Решение.
Данное тело вращения схематически показано на рисунке 9. Объем этого тела найдем по формуле
     
Вычислим криволинейные интегралы
     
Следовательно, объем тела равен
     

Пример 10 Найти объем эллипсоида, образованного вращением эллипса с полуосями a и b вокруг оси Оx. (рисунок 10).

Рис.10

Решение.
Воспользуемся параметрическими уравнениями эллипса
     
Мы можем ограничиться рассмотрением половины эллипса, лежащей в верхней полуплоскости y ≥ 0. Тогда объем эллипсоида с полуосями a, b, b будет равен
     
где под функцией y(x) подразумевается верхняя половина эллипса. Переходя к параметрической форме записи, находим объем
     
Отсюда, в частности, следует, что объем шара (при этом a = b = R)

равен .

Геометрические приложения криволинейных интегралов Криволинейные интегралы имеют многочисленные приложения в математике, физике и прикладных расчетах. В частности, с их помощью вычисляются

Пример 4 Найти длину циклоиды, заданной в параметрическом фиде вектором в интервале

Геометрические приложения поверхностных интегралов С помощью поверхностных интегралов вычисляются

Пример 4 Вычислить объем эллипсоида .

Дифференциалы высших порядков также определяются индуктивно: дифференциалом второго порядка (или вторым дифференциалом) функции называется дифференциал от её первого дифференциала; дифференциалом третьего порядка называется дифференциал от второго дифференциала; и вообще, дифференциалом n-го порядка функции называется дифференциал от её n-1-го дифференциала. При вычислении высших дифференциалов необходимо учитывать, что дифференциал независимой переменной - произвольная и независимая от х величина, которая при дифференцировании рассматривается как постоянная. Поэтому ; ; …., .

6.11.3. Неинвариантность формы старших дифференциалов относительно замены переменной. В разделе 6.8.2. Инвариантность формы первого дифференциала мы доказали, что независимо от того, является ли х независимой переменной, или сама эта переменная х является функцией другой переменной t, формула для нахождения дифференциала первого порядка одна и та же: dy = y'dx. Покажем, что уже второй дифференциал этим свойством не обладает. Если х - независимая переменная, то d 2y = y"dx2. Если x = j(t), то d 2y = d(dу) = d(y'хdx) =

= d(y'х)dx + y'хd(dx). Для первого слагаемого вследствие инвариантности формы первого дифференциала d(y'х) = y"ххdx, для второго d(dx) = d 2x, поэтому окончательно d 2y = y"ххdx2+ y'хd 2x, что отличается от случая независимой переменной. Причина этого понятна: если х независимая переменная, то при нахождении второго дифференциала dx рассматривается как независимая от x константа; в случае x = j(t) дифференциал dx определяется дифференциалом dt.

6.11.4. Старшие производные функции, заданной параметрически. В разделе 6.10.1. Производные функций, заданных параметрически, для первой производной функции

  была получена формула . Если применить эту формулу к функции

  то получим: ; аналогично, применяя ту же формулу ко второй производной , получим выражение для третьей производной, и т.д. Так, для функции  мы получили . Найдем вторую производную: .

Пример 4 Вычислить объем эллипсоида .

Геометрические приложения поверхностных интегралов

Пример 7. Найти интеграл  .

Решение. Разложим подынтегральную функцию на сумму простейших дробей. Чтобы разложить знаменатель на сомножители нужно решить квадратное уравнение . Его корнями являются . Теперь знаменатель может быть представлен следующим образом

.

Тогда наша дробь представима в виде суммы элементарных дробей:

.

Нужно найти неизвестные коэффициенты A,B,C. Для этого приведем дроби к общему знаменателю:

.

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х2,х1,х0 и получим систему трех уравнений с тремя неизвестными:

.

Решив эту систему получим следующие значения A, B и C: .

Значит, наша дробь раскладывается на сумму дробей:

.

Подставляя это разложение в интеграл, получаем:


Решение дифференциальных уравнений с помощью рядов Фурье