Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач Линейные уравнения


Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений системы обращается в верное равенство.

Предмет теории вероятностей

В жизни мы часто сталкиваемся со случайными явлениями. Чем обусловлена их случайность – нашим незнанием истинных причин происходящего или случайность лежит в основе многих явлений? Споры на эту тему не утихают в самых разных областях науки. Случайным ли образом возникают мутации, насколько зависит историческое развитие от отдельной личности, можно ли считать Вселенную случайным отклонением от законов сохранения? Пуанкаре, призывая разграничить случайность, связанную с неустойчивостью, от случайности, связанной с нашим незнанием, приводил следующий вопрос: «Почему люди находят совершенно естественным молиться о дожде, в то время как они сочли бы смешным просить в молитве о затмении?»

В дальнейшем мы не будем касаться природы понятия случайности, но при каждом конкретном применении теории вероятностей и статистики нужно сначала внимательно проанализировать суть происходящих явлений.

Попробуем ознакомиться с основными закономерностями случайных процессов.

Для начала, возьмем в руки монетку, будем ее бросать и записывать результат последовательно в виде строки: О, Р, Р, О, О, Р. Здесь буквами О и Р обозначено выпадение орла или решки. В нашем случае бросание монетки – это испытание , а выпадение орла или решки – событие , то есть возможный исход нашего испытания.

Пусть мы провели испытание N раз, R раз выпала решка, O  =  N  –  R раз выпал орел.

Предположим, что при большом числе испытаний N отношение стремится к некоторой постоянной величине. Назовём её вероятностью p наступления события.

 

Если существует идеализированный процесс, который можно представить в виде испытаний, и частота случайного события приближается к пределу то этот предел называется вероятностью данного случайного события.

Часто вероятность, которая в нашем определении заключена в интервале 0 ≤  p  ≤ 1, выражают в процентах, умножая число p на 100 %.

Иногда вероятность события можно предсказать из соображений симметрии. Например, при бросании «идеального» игрального кубика выпадение любой грани равновозможно (равновероятно). Всего граней 6, значит, вероятность выпадения i -й грани p  ( A i ) =  p  ( A 1 ) =  p  ( A 2 ) =  p  ( A 3 ) =  p  ( A 4 ) =  p  ( A 5 ) =  p  ( A 6 ) = 1/6.

Если мы имеем дело с измеримыми случайными величинами, например, измеряем в течение нескольких лет количество снега, выпавшего за день, то понятие вероятности тоже можно ввести. Для этого запишем результаты измерения в таблицу с точностью, например, в сантиметр и подсчитаем относительную частоту появления того или иного значения. Например, вероятность того, что выпадет 3 см снега, – где N  (3) – количество дней, в каждый из которых выпало 3 см, N – общее количество дней, в которые проводились измерения.

Для того чтобы найти вероятность события A , происходящего в серии испытаний, нужно:

  1. найти число N всех возможных исходов (элементарных событий);
  2. принять предположение о равновероятности этих исходов;
  3. найти количество N  ( A ) тех исходов, в которых наступает событие A ;
  4. найти частное оно и будет равно вероятности p  ( A ) наступления события A .

В этой очевидной инструкции есть очень важный пункт о равновероятности исходов. Проиллюстрируем его на примерах. Метод Гаусса - классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.
Понятие множества