Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач Линейные уравнения


Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений системы обращается в верное равенство.

Сравнение и отображение множеств

 

Мощностью конечного множества (множества, содержащего конечное число элементов) называется количество его элементов. Мощность множества A   обозначается m ( A ).

Пример 1

Определите мощность множества A  = {1, 3, 5, 7, 9} нечётных чисел.

Показать решение

Простым пересчётом элементов убеждаемся, что нечётных чисел всего 5, и потому m  ( A ) = 5.

Ответ. 5.

Ясно, что понятие мощности конечных множеств позволяет сравнивать их по количеству элементов. Так, если A  = {1, 3, 5, 7, 9}, а  B  = {2, 4, 6, 8}, то  m  ( A ) = 5, а  m  ( B ) = 4 и потому m  ( A ) >  m  ( B ).

Однако если мы имеем дело с бесконечными множествами, то пересчитать элементы множества уже не удастся. Но иногда можно, как говорят, установить взаимно однозначное соответствие между двумя бесконечными множествами.

 

Говорят, что между множествами A и B установлено взаимно однозначное соответствие, если из элементов этих множеств можно составить пары ( a ,  b ), причем каждый элемент из A и каждый элемент из B входят в одну и только одну пару.

Множества, между которыми установлено взаимно однозначное соответствие, содержат одинаковое количество элементов.

 

Множества A и B называют равномощными , если между их элементами можно установить взаимно однозначное соответствие (ещё говорят: можно установить взаимно однозначное отображение множеств).

Мощность множества натуральных чисел обозначается א. Алеф א – первая буква еврейского алфавита, так обозначается наименьшая возможная для бесконечных множеств мощность.

 

Множества, равномощные множеству натуральных чисел, называются счётными множествами . Метод Гаусса - классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.
Понятие множества