Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач >

Линейные цепи постоянного тока Комплексный метод расчета цепей синусоидального тока Переходные процессы в электрических сетях Расчет неразветвленных магнитных цепей Асинхронная машина Однофазный асинхронный двигатель


Лекции по электротехнике Электрические и магнитные цепи

Круговое вращающееся магнитное поле двух- и трехфазной обмоток Круговым вращающимся магнитным полем называется поле, вектор магнитной индукции которого, не изменяясь по модулю, вращается в пространстве с постоянной угловой частотой.

Линейные цепи синусоидального тока

Общие сведения

 В электроэнергетике используют в основном переменный ток. В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Основное преимущество переменного тока по сравнению с постоянным током заключается в возможности просто и с минимальными потерями преобразовывать напряжение при передаче энергии. Генераторы и двигатели переменного тока имеют более простое устройство, надежней в работе и проще в эксплуатации по сравнению с машинами постоянного тока.

Амплитуда, частота и фаза синусоидального тока и напряжения

 В современной технике широко используются переменные токи: синусоидальные, прямоугольные, треугольные и др. (рис. 2.1). Значение тока в любой момент времени называется мгновенным значением. Мгновенные значения тока, напряжения, ЭДС обозначаются буквами .

  Токи, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, называют периодом Т (рис. 2.1).

Если кривая изменения пе– 

 Рис. 2.1 риодического тока описывается синусоидой, ток называется синусоидальным. Если кривая отличается от синусоиды – ток несинусоидальный. В электрических цепях переменного тока наиболее часто используют синусоидальную форму, характеризующуюся тем, что все напряжения и токи являются синусоидальными функциями времени. В генераторах переменного тока стремятся получить ЭДС, изменяющуюся во времени по закону синуса. Тем самым обеспечивается наиболее выгодный эксплуатационный режим работы электрических установок.

  Все синусоидальные функции времени (например, ток) записывают в одинаковой форме:

  (2.1)

где – мгновенное значение тока; – максимальное (амплитудное) значение тока (рис. 2.2);  – угловая частота;   – начальная фаза.

Аргумент синуса  называется фазой. Угол  равен фазе в начальный момент времени = 0 и поэтому называется начальной фазой. Фаза с течением времени непрерывно растет (рис 2.2). После ее увеличения на  весь цикл изменения тока повторяется. В течение периода  фаза увеличивается на . Поэтому отношение определяет скорость изменения фазы и называется угловой частотой

Рис. 2.2

 

(2.2) 

где  – частота, равная числу периодов в секунду, Гц. При стандартной частоте = 50 Гц угловая частота За аргумент синусоидальной функции принимают время  или угол .

 Таким образом, для определения мгновенных значений  и  необходимо определить их параметры: амплитуду, угловую частоту и начальную фазу.

 Постоянный ток можно рассматривать как частный случай переменного тока, частота которого равна нулю. В современной технике используется широкий диапазон частот переменных токов от сотых долей до миллиардов Герц. В электроэнергетике нашей страны и Европы стандартная частота 50 Гц, США – 60 Гц.

Рис. 2.3

 Синусоидальные ЭДС в современной технике получают различными методами в электромашинных или электронных генераторах и других устройствах. Наглядным примером является наведение ЭДС за счет электромагнитной индукции в рамке, вращающейся в однородном магнитном поле (рис. 2.3).

 Допустим, что рамка площадью  содержит  витков и вращается с постоянной угловой скоростью   в магнитном поле с индукцией . Тогда потокосцепление рамки

.

 По закону электромагнитной индукции в рамке наводится ЭДС

.

 Следовательно, ЭДС изменяется по синусоидальному закону.

 Рассмотренный способ получения ЭДС является лишь наглядной иллюстрацией и в технике не используется ввиду экономической нецелесообразности создавать достаточно сильное равномерное магнитное поле в таком большом воздушном промежутке.

 В промышленности для получения синусоидальных ЭДС применяют электрические машины – синхронные генераторы, приводимые во вращение тепловыми, газовыми, гидравлическими и др. двигателями.

Закон Ома для участка цепи, содержащего ЭДС

Преобразование линейных электрических схем Расчет и исследование сложных электрических схем во многих случаях можно значительно облегчить за счет преобразования. Суть преобразования заключается в замене участков цепи эквивалентными, но более простыми, т.е. не вызывающими изменения напряжения и токов в остальной части цепи.

Действующее значение синусоидального тока Мгновенное значение переменного тока все время изменяется от нуля до максимального значения. Однако переменный ток, как и постоянный, измеряется в амперах. Какой же смысл мы вкладываем в термин «переменный ток»? Можно было бы характеризовать переменный ток его амплитудой.

Индуктивная катушка в цепи синусоидального тока Индуктивная катушка как элемент схемы замещения реальной цепи синусоидального тока дает возможность учитывать при расчете явление самоиндукции и явление накопления энергии в ее магнитном поле.

Магнитное поле в электрической машине С целью усиления и концентрации магнитного поля в электрической машине для него создается магнитная цепь. Электрическая машина состоит из двух основных частей неподвижного статора и вращающегося ротора, выполненных соответственно в виде полого и сплошного цилиндров.
В электроэнергетике используют в основном переменный ток