Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач >

Линейные цепи постоянного тока Комплексный метод расчета цепей синусоидального тока Переходные процессы в электрических сетях Расчет неразветвленных магнитных цепей Асинхронная машина Однофазный асинхронный двигатель


Лекции по электротехнике Электрические и магнитные цепи

В цепях несинусоидального тока резонансные режимы возможны для различных гармонических составляющих. Как и при синусоидальных токах, резонанс на к-й гармонике соответствует режиму работы, при котором к-е гармоники напряжения и тока на входе цепи совпадают по фазе, иначе говоря входное сопротивление (входная проводимость) цепи для к-й гармоники вещественно.

Полупроводниковые диоды

В пограничном слое двух полупроводников с различным характером электропроводности при одном направлении тока дырки и электроны движутся навстречу друг другу, и при их встрече происходит рекомбинация. В цепи, таким образом, протекает ток (рис. 12.4 а).

Если изменить направление тока на обратное (рис.12.4 б), то изменится и направление движения дырок и электронов. Носители зарядов при этом не приближаются к граничной поверхности полупроводников, а удаляются от нее.

  а) б)

Рис. 12.4

В результате в пограничной области образуется слой, лишенный свободных носителей зарядов. Постоянный ток через этот слой проходить не может. В реальных условиях очень малый ток проходит через этот слой вследствие наличия в полупроводнике, наряду с примесной, некоторой собственной электропроводности. Однако сопротивление цепи в этом случае (рис. 12.4 б) во много раз больше, чем в предыдущем случае (рис. 12.4 а).

Электронно-дырочный, или p-n, переход представляет собой электрический переход между p и n зонами полупроводника. Электронный прибор с таким переходом называется полупроводниковым диодом. Он обладает односторонней проводимостью. Все полупроводниковые диоды по конструктивному исполнению делят на точечные и плоскостные. Точечный диод состоит из пластины германия или кремния с электропроводностью n-типа и вплавленной в нее стальной проволочкой (рис. 12.5 а). У точечного диоды линейные размеры p-n - перехода много меньше его толщины. Из-за малой площади контакта пря-

 

  а) б)

Рис. 12.5

мой ток таких диодов, а также их межэлектродная емкость сравнительно малы, поэтому их используют в основном для выпрямления тока в слаботочных устройствах сверхвысокой частоты. Вольт–амперные характеристики точечных диодов приведены на рис. 12.5 б.

В плоскостных диодах p-n - переход образован двумя полупроводниками с различными токами электропроводности, причем линейные размеры перехода много больше его толщины. Площадь перехода колеблется в широких пределах: от долей мкм2 до нескольких см2, поэтому прямой ток плоскостных диодов составляет от единиц до тысяч ампер. Конструкция и вольт-амперные характеристики плоскостных диодов показаны на рис. 12.6 а, б.

а)  б)

Рис.12.6

Основными параметрами диодов являются: прямой максимальный ток диода , прямое напряжение , максимально допустимое обратное напряжение , обратный ток диода .

12.2.3. Стабилитроны

 Стабилитрон представляет собой специальный полупроводниковый диод, напряжение электрического пробоя которого очень слабо зависит от протекающего через него тока. Стабилитрон служит для стабилизации напряжения в различных электронных устройствах (например, блоках питания). Вольт-амперная характеристика стабилитрона приведена на рис. 12.7.

Рис. 12.7

Из характеристики видно, что напряжение стабилизации  слабо изменяется при достаточно больших изменениях тока стабилизации . Это свойство стабилитрона используют для получения стабильного напряжения в стабилизаторах напряжения.

Одним из основных параметров, учитываемых при выборе стабилитронов, является напряжение стабилизации (пробоя). В справочных данных указывается номинальное напряжение стабилизации для определенного тока. В настоящее время отечественной промышленностью серийно выпускаются стабилитроны с напряжением стабилизации в диапазоне 5…300 В и с допусками на разброс номинального напряжения 5, 10, 15 %. Наличие разброса ограничивает применение некоторых схем включения стабилитронов и приводит иногда к усложнению схем.

Напряжение стабилизации зависит также от температуры стабилитрона. Количественно эта зависимость выражается температурным коэффициентом напряжения , представляющим собой отношение изменения напряжения стабилизации к изменению температуры стабилитрона, приведенное к одному вольту, %/°C

,  (12.1)

где  и  – напряжения стабилизации при температурах  и .

Дополнительными характеристиками стабилитрона являются динамическое сопротивление на участке стабилизации , минимальный  и максимальный  ток стабилизации.

Параметры схем со стабилитронами выбираются так, чтобы длительный средний ток через них был меньше максимально допустимого  Значение тока  ограничено допустимой по тепловому режиму мощностью рассеяния и представляет собой отношение этой мощности к напряжению стабилизации. Кратковременно же стабилитрон способен выдерживать токи, значительно большие  Значение температурного коэффициента возрастает с увеличением напряжения стабилизации. Поэтому в ряде случаев целесообразно заменить один высоковольтный стабилитрон цепочкой низковольтных, соединенных последовательно.

Конструктивно стабилитроны выполняются аналогично выпрямительным диодам.

Индуктивное сопротивление синхронной машины

Параллельная работа синхронного генератора с сетью

Электронные приборы и устройства Возникновение электроники было подготовлено всем ходом развития промышленного производства и в частности электротехники. В цепи замечательных открытий и изобретений в этой области следует особо выделить такие достижения, как открытие явления термоэлектронной эмиссии (1887 г.), создание электровакуумного диода английским ученым Я. Флемингом (1904 г.) и триода Ли де Форестом в США в 1907 г. Эти изобретения позволили генерировать и усиливать электромагнитные колебания. Электроника – важнейшая отрасль науки и техники, изучающая физические процессы, происходящие в электровакуумных и полупроводниковых приборах при взаимодействии заряженных частиц и электрических полей, а также занимающаяся разработкой и созданием электронных приборов и устройств для измерения, контроля, обработки и хранения информации.

Тиристоры представляют собой кристаллическую структуру из четырех слоев чередующихся электронной и дырочной проводимостей

Магнитные цепи. В конструкцию многих электротехнических устройств (электрических машин, трансформаторов, электрических аппаратов, измерительных приборов и т.д.) входят магнитные цепи. Магнитной цепью называется часть электротехнического устройства, содержащая ферромагнитные тела, в которой при наличии намагничивающей силы возникает магнитный поток и, вдоль которой замыкаются линии магнитной индукции. Источниками намагничивающей силы могут быть катушки с токами, постоянные магниты.
В электроэнергетике используют в основном переменный ток