Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач >

Линейные цепи постоянного тока Комплексный метод расчета цепей синусоидального тока Переходные процессы в электрических сетях Расчет неразветвленных магнитных цепей Асинхронная машина Однофазный асинхронный двигатель


Лекции по электротехнике Электрические и магнитные цепи

В цепях несинусоидального тока резонансные режимы возможны для различных гармонических составляющих. Как и при синусоидальных токах, резонанс на к-й гармонике соответствует режиму работы, при котором к-е гармоники напряжения и тока на входе цепи совпадают по фазе, иначе говоря входное сопротивление (входная проводимость) цепи для к-й гармоники вещественно.

Однофазный асинхронный двигатель

 Принцип действия. Однофазный асинхронный двигатель – двигатель, на статоре которого однофазная обмотка, а на роторе – короткозамкнутая обмотка. Однофазный ток статора создает пульсирующий магнитный поток, изменяющий свое направление с частотой напряжения сети. Этот поток все время направлен по осевой линии полюсов и изменяется во времени по синусоидальному закону. Пульсирующий магнитный поток можно представить в виде двух вращающихся с одинаковой частотой в противоположном направлении потоков, амплитуды которых равны половине амплитуды пульсирующего потока. На рис. 11.14 а показаны векторы вращающихся потоков  и  в момент времен  = 0, соответствующий амплитуде тока и магнитного потока однофазной обмотки.

а)  б) в)

Рис. 11.14

Через время  векторы  и  переместились в противоположном направлении на угол   (рис. 11.14 б) и результирующий поток , а его направление по-прежнему совпадает с осевой линией полюсов. На рис. 11.14 в показаны магнитные потоки при , когда вращающиеся векторы  и  повернулись на угол  и результирующий магнитный поток   = 0. Дальнейшее изменение тока ведет к изменению направления потока  и т. д.

 Вращающиеся потоки создают вращающие моменты

  и ,

где  – скольжения ротора по отношению к прямому потоку   (направления вращения ротора и потока  совпадают) и обратному потоку

  и .

 На рис. 11.15 а приведены зависимости ,  и суммарного момента , а на рис. 11.15 б – соответствующие им механические характери

 а) б)

Рис. 11.15

стики. Анализ зависимостей  и  показывает, что при неподвижном роторе ( =0), =0, т.е. пусковой момент равен нулю. Если ротор приведен во вращение в ту или иную сторону, то один из моментов   или  будет большим. Если при этом результирующий момент  больше момента сопротивления , то двигатель достигнет определенной установившейся скорости вращения.

 Однофазный асинхронный двигатель с пусковой обмоткой (рис. 11.16) имеет дополнительную обмотку П, смещенную относительно рабочей обмотки Р на ноль электрических градусов. В цепь пусковой обмотки включен фазосмещающий элемент . Таким элементом может быть активное , емкостное  и индуктивное  сопротивления. На рис. 11.16 показаны векторные диаграммы токов с учетом активного и индуктивного сопротивлений самих обмоток. Из них видно, что при  и  ток в пусковой обмотке  по фазе опережает ток в рабочей обмотке   на угол  а при  – отстает. Результирующая МДС обмоток создает вращающееся магнитное поле и пусковой момент. Лучшие условия пуска обеспечиваются при включении конденсатора в пусковую фазу. Так как требуемая емкость конденсатора значительна, этот метод пуска применяют при большом пусковом моменте. Чаще применяют пуск с помощью активного сопротивления. При этом пусковая обмотка должна быть выполнена с увеличенным активным сопротивлением.

Рис. 11.16

 Трехфазный асинхронный двигатель в однофазном режиме. Возможны различные варианты использования трехфазных двигателей в однофазном режиме. схемы включения показаны на рис. 11.17.

 Рекомендуемые параметры:

емкости конденсаторов, мкФ и их рабочие напряжения:

 для схемы рис. 11.17 а  = 2800 , напряжение ;

 для схемы рис. 11.17 б  = 4800 ; напряжение ;

 для схемы рис. 11.17 в  = 1600; напряжение ;

 для схемы рис. 11.17 г   = 2740 . напряжение .

 Нагрузка двигателя с конденсатором

.

  При пуске с номинальным моментом общая емкость конденсатора должна составлять

Сп = Ср + Со = (2,5…3,0)Ср,

а отключаемая после пуска Со = (1,5…2,0)Ср,.

  Для пуска без нагрузки отключаемый конденсатор не требуется.

а)  б)

в) г)

Рис. 11.17

 Пример 11.3. Определить параметры схемы (рис. 11.17 а) для пуска двигателя 4А71АЧУ3, мощностью 0,55 кВт, напряжением 220/380 B и током 2,9/1,7 А при номинальной нагрузке.

 Решение. Емкость конденсатора  
= 12,5 мкФ. Емкость отключаемого конденсатора Со = (1,5…2,0)Ср. Принимаем  = мкФ.

 Напряжение на конденсаторах  = 1,15· = 1,15·380=437 В.

 Выбираем пять конденсаторов типа БГТ по 6 мкФ с напряжением 600 В.

Частота вращения магнитного потока ротора Так как в короткозамкнутом роторе каждый стержень (в пазу проводника) образует отдельную фазу, а пазы ротора сдвинуты в пространстве, то сдвинутые по фазе токи в стержнях создают вращающееся магнитное поле.

Энергетический баланс асинхронного двигателя Асинхронный двигатель потребляет из сети активную и реактивную мощность.

Пуск и регулирование скорости асинхронного двигателя

  Синхронными машинами называют электрические машины переменного тока, у которых частота вращения ротора находится в строго постоянном соотношении с частотой тока электрической сети.

Магнитные цепи. В конструкцию многих электротехнических устройств (электрических машин, трансформаторов, электрических аппаратов, измерительных приборов и т.д.) входят магнитные цепи. Магнитной цепью называется часть электротехнического устройства, содержащая ферромагнитные тела, в которой при наличии намагничивающей силы возникает магнитный поток и, вдоль которой замыкаются линии магнитной индукции. Источниками намагничивающей силы могут быть катушки с токами, постоянные магниты.
В электроэнергетике используют в основном переменный ток