Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач >

Линейные цепи постоянного тока Комплексный метод расчета цепей синусоидального тока Переходные процессы в электрических сетях Расчет неразветвленных магнитных цепей Асинхронная машина Однофазный асинхронный двигатель


Лекции по электротехнике Электрические и магнитные цепи

Методика расчета линейных цепей при периодических несинусоидальных токах Возможность разложения периодических несинусоидальных функций в ряд Фурье позволяет свести расчет линейной цепи при воздействии на нее несинусоидальных ЭДС (или токов) источников к расчету цепей с постоянными и синусоидальными токами в отдельности для каждой гармоники.

Электрические машины переменного тока

Общие сведения

Асинхронные машины

 Асинхронная машина – это бесколлекторная машина переменного тока, у которой при работе возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т.е. с угловой скоростью, отличной от угловой скорости поля.

 Асинхронные двигатели являются самыми распространенными из всех двигателей. Их преимущества состоят в простоте устройства, большой надежности и сравнительно низкой стоимости.

 Широко применяются трехфазные асинхронные двигатели, предложенные М.О. Доливо-Добровольским в 1888 г. Они выполняются мощностью от долей ватта до тысяч киловатт, с частотой вращения от 500 до 3000 об/мин и напряжением до 10 кВ. Однофазные асинхронные двигатели используют для привода бытовых приборов, электроинструмента, в схемах автоматики. Они питаются от однофазной цепи и имеют мощность, как правило, не выше 0,5 кВт.

 Асинхронные машины могут работать в режиме генератора. Но как источники электрической энергии они почти не применяются, так как не имеют собственного источника возбуждения магнитного потока и по своим показателям уступают синхронным генераторам.

  Асинхронные машины применяют в качестве регуляторов напряжения, фазорегуляторов, преобразователей частоты и др.

 Недостатками асинхронных машин являются сложность и неэкономичность регулирования их эксплуатационных характеристик.

Устройство асинхронного двигателя

 Асинхронный двигатель состоит из статора, ротора и подшипниковых щитов (рис. 11.1). Статор – неподвижная часть двигателя – имеет цилиндрическую форму. Он состоит из корпуса 1, сердечника 2 и обмотки 3. Корпус литой стальной или чугунный. Магнитопровод статора собирается из тонких листов электротехнической стали. На внутренней поверхности он имеет пазы, в которые укладывается обмотка статора. Ротор асинхронного двигателя – вращающаяся часть – состоит из стального вала 4, магнитопровода 5, набранного из листов электротехнической стали с выштампованными пазами. Обмотка ротора бывает короткозамкнутой или фазной. Короткозамкнутая обмотка выполняется из алюминиевых или медных стержней, замкнутых с обоих торцов ротора накоротко. Фазный ротор имеет трехфазную обмотку, соединенную в звезду. Выводы обмотки подсоединены к кольцам на валу и с помощью щеток подсоединяются к реостату или другому устройству. Вращающийся ротор размещают на общем валу cо статором. Вал вращается в подшипниковых щитах. Соединение обмотки статора осуществляется в коробке, в которую выведены начала фаз С1, С2, С3 и концы фаз С4, С5, С6. На рис. 11.2 показаны схемы расположения этих выводов (рис. 11.2 а) и способы соединения их между собой при соединении фазных обмоток звездой (рис. 11.2 б) и треугольником (рис. 11.2 в).

Рис. 11.1

 Если в паспорте двигателя указаны два напряжения, например, 380/220, то большему напряжению соответствует соединение звездой, более меньшему – треугольником. В обоих случаях напряжение на фазе двигателя равно 220 В.

  а) б) в)

Рис. 11.2

 11.3. Получение вращающегося магнитного поля

  Основой действия асинхронного двигателя является вращающееся магнитное поле. Принцип получения вращающегося магнитного поля заключается в том, что если по системе проводников, распределенных в пространстве по окружности, протекают токи, сдвинутые по фазе, то в пространстве создается вращающееся поле.

 Рассмотрим получение вращающегося поля в трехфазном двигателе. На рис. 11.3 показаны три фазные обмотки A – X, B – Y, C – Z, каждая в виде одного витка. От источника питания к обмоткам подводится трехфазная система токов

;;. (11.1)

 Положительные направления токов приняты от начала обмотки к концу, а соответствующие им пульсирующие магнитные потоки образуют трехфазную звезду .

Рассмотрим результирующий магнитный поток для нескольких моментов времени.

  В начальный момент времени при  = 0

  а) б)

Рис. 11.3

 Им соответствуют магнитные потоки

,

где  – максимальное значение потока фазы.

 Результирующий магнитный поток в 1,5 раза больше фазного и направлен по вертикали вниз (рис. 11.4 а).

 В момент времени  токи в обмотках

.

  Этим токам соответствуют магнитные потоки

.

На рис. 11.4 б показаны векторы результирующего магнитного потока и его составляющие. Направление потока отличается от предыдущего на 90°, а его значение не изменилось

.

  В момент времени , соответствующий , токи в обмотках:

  Этим токам соответствуют магнитные потоки

  .

На рис. 11.4 в показаны результирующий магнитный поток и его составляющие. По сравнению с начальным моментом времени результирующий магнитный поток изменил направление на 180°, а его значение осталось неизменным и равным

..

  Таким образом, трехфазная обмотка, питаемая сдвинутыми на 120° токами, создает вращающееся магнитное поле. Результирующий поток остается неизменным и равным 1,5 от максимального потока фазы. Направление этого потока всегда совпадает с направлением магнитного потока той фазы, ток в которой в данный момент максимален. Поэтому для изменения направления вращения необходимо поменять местами любые две фазы.

 Рассмотренные примеры относятся к двухполюсному исполнению обмотки () при частоте вращения поля . В общем случае частота вращения поля

,  (11.2)

где  – число пар полюсов машины;  – частота тока статора.

Внешняя характеристика трансформатора представляет собой зависимость между вторичным напряжением и током нагрузки при заданном первичном напряжении

Мощность потерь и КПД трансформатора

Параллельная работа трансформаторов Параллельное включение силовых трансформаторов применяют для увеличения суммарной мощности и более рационального сочетания мощностей источников питания и потребителей, а также повышения надежности электроснабжения. При параллельной работе к первичным обмоткам трансформаторов подводится одно и то же напряжение, а вторичные обмотки подключаются к общим шинам, от которых питаются потребители

Принцип действия асинхронной машины и режимы ее работы

На практике к несинусоидальности напряжений и токов следует подходить двояко: " в силовой электроэнергетике несинусоидальные токи обусловливают в общем случае дополнительные потери мощности, пульсации момента на валу двигателей, вызывают помехи в линиях связи; поэтому здесь необходимо "всеми силами" поддержание синусоидальных режимов; " в цепях автоматики и связи, где несинусоидальные токи и напряжения лежат в основе принципа действия электротехнических устройств, задача наоборот заключается в их усилении и передаче с наименьшими искажениями.
В электроэнергетике используют в основном переменный ток