Физика решение задач

Физика решение задач
Задачи контрольной
Молекулярная физика
Электpостатика
Закон Кулона
Потенциал
Основные законы постоянного
тока
Физика атомного ядра
Электротехнические материалы
Электромагнетизм
Электромагнитное
взаимодействие
Квантооптические явления
Оптика
Волновая оптика
Теория аберрации Стокса
Физические основы механики
Молекулярная физика
и термодинамика
Молекулярно-кинетическая
теория
Математика решение задач
Математика Задачи
Комплексные числа
Дифференциальное и
интегральное исчисление
Интегралы
Основные задачи на прямую
и плоскость
Векторная алгебра
Исследование функции
и построение графика
Производная функции
Свойства комплексных чисел
Алгебраические уравнения
Одночлены и многочлены
Высшая математика в экономике
Линейные уравнения
Понятие множества
История искусства
Послевоенный дизайн
Современные интерьеры
общественных зданий
Эмоциональный потенциал
архитектуры
Об условном развитии
пространства
О масштабе и образе
Форма, материал, цвет
О  компонентах интерьера
Язык архитектуры
Дизайн архитектурной среды
Стиль модерн Ар Нуво
Промышленные выставки
Искусство Западная Европа
Искусство Россия
Архитектура и скульптура
Живопись Россия
Импрессионизм
Эпоха Возрождения
Искусство Испании
Искусство Голландии
Европа и Россия XVIII век
Формирование дизайна
Информатика
Накопители на жестких дисках
Локальная сеть

Сборник задач по ядерной физике

Ядерные реакции

Ядерной реакцией называют процесс образования новых ядер и частиц при сближении ядер и частиц до расстояний ~ 10-13см, когда вступают в действие ядерные силы. Взаимодействие между бомбардирующей частицей а и ядром-мишенью А может осуществляться двумя различными способами. Ядерные реакции при кинетической энергии бомбардирующих частиц < 10 МэВ, как правило, протекают в два этапа через промежуточную стадию образования составного ядра Акт ядерной реакции, как и все процессы в микромире, является случайным явлением. Поэтому для количественного описания возможности ядерной реакции необходимо использовать вероятностный подход. Такой количественной характеристикой вероятности протекания реакции является эффективное сечение , которое определяется следующим образом. Законы сохранения в ядерных реакциях Во всех ядерных реакциях и радиоактивных превращениях ядер алгебраическая сумма числа элементарных электрических зарядов первичной системы равна алгебраической сумме элементарных зарядов вторичной системы. Кинематическая схема ядерной реакции и связь между энергиями, импульсами и углами вылета частиц в ЛСК и СЦИ имеет наглядное графическое представление и может быть проанализирована с помощью импульсной диаграммы (векторной диаграммы импульсов). Построение импульсной диаграммы основано на применении законов сохранения энергии и импульса. Термоядерными реакциями называются ядерные реакции, протекающие между легчайшими ядрами при очень высоких температурах среды. Высокие температуры необходимы для сообщения ядрам, участвующих в реакции, кинетической энергии для преодоления кулоновского барьера и сближения ядер до расстояний, когда начинается ядерное взаимодействие Фотоядерными реакциями называют ядерные реакции под действием g-квантов.

Взаимодействие света с веществом. Корпускулярные свойства света

Имеются такие явления, для которых свет демонстрирует волновые свойства (дифракция, интерференция), имеются явления, когда он демонстрирует корпускулярные свойства (например, фотоэффект), возникает естественный вопрос, что же он такое на самом деле, волна или частицы? Кто был прав, Ньютон или Гюйгенс, которые придерживались на первый взгляд взаимоисключающих точек зрения? Эффект Комптона подтвердил корпускулярные свойства света. В рамках корпускулярных представлений задача о давлении света элементарно решается, хотя из волновой теории следует, что свет должен оказывать давление при падении на поглощающий или отражающий экран.

Тепловое излучение

  • Все тела при температуре выше абсолютного нуля излучают электромагнитные волны. Этот кусок мела, я, вы, полы, тут всё излучает электромагнитные волны. Это излучение называется тепловым излучением . Механизм излучения простой: в конечном итоге все тела состоят из заряженных частиц, которые при температуре выше абсолютного нуля находятся в состоянии хаотического движения, а дёргающийся заряд излучает электромагнитные волны
  • Закон Кирхгофа Можно установить один замечательный и неочевидный закон, связывающий излучательную и поглощательную способности тела. Полость, стенки которой поддерживаются при температуре T, значит, эта полость заполнена электромагнитным излучением (понятно, что стенки излучают) и находится в равновесии со стенками. Важное обстоятельство: спектральный состав равновесного излучения в полости не зависит от того, как устроены стенки этой полости.
  • Закон Вина Длина волны очень просто зависит от температуры
  • Закон Стефана-Больцмана полная энергия излучения пропорциональна четвёртой степени температуры

    Элементы квантовой механики

  • Волновая функция в определённых ситуациях частицы проявляют волновые свойства, то есть демонстрируют вот такую интерференционную картину, в других определённых ситуациях они ведут себя как нормальные частицы. 
  • Уравнение Шрёдингера должно играть здесь ту роль, которую закон Ньютона в классической механике. Решение уравнения Шрёдингера для свободной частицы Смысл этого уравнения, как и уравнений Максвелла, мы будем усматривать из некоторых конкретных ситуаций. Когда мы переберём все возможные ситуации, тогда мы и осознаем смысл уравнения, другого понятия смысла и быть не может.
  • Длина волны Дебройля (де Бройля) Дебройль ещё до всей этой науки выдвинул гипотезу о том, что частице надо приписывать волновые свойства, которые характеризуются вот такой длиной волны.
  • Волновые пакеты. Соотношения неопределённостей
  • Расплывание волновых пакетов Предположим, что мы создали такое состояние частицы, когда она локализована в ограниченной области пространства, то есть соорудили в начальный момент времени волновой пакет Стационарные состояния Мы нашли одно специальное решение в виде плоской волны, сейчас мы найдём ещё один класс специальных решений для уравнения Шрёдингера Прохождение частицы через потенциальный барьер. Туннельный эффект Мы нашли одно частное решение для свободной частицы, когда не было потенциальной энергии, рассмотрим сейчас задачу чуть более сложную Если частица локализована в ограниченной области пространства, то говорят, что она находится в связанном состоянии. Частица в ящике

    Постулаты квантовой механики

  • Векторы и операторы собственные векторы эрмитова оператора ортогональны, а соответствующие им собственные значения действительны
  • Наблюдаемая переменная – это переменная, которую можно измерить
  • Если в качестве базисных векторов будут взяты векторы, то есть собственные векторы оператора координат, то значит мы работаем в координатном представлении
  • Оператор энергии Для частицы в потенциальном поле сил гамильтониан H – это полная энергия частицы, выраженная через координаты и импульс
  • Оператор импульса Физическая проблема такая: энергия квантуется, координата, как мы видели, не квантуется, спрашивается, квантуется ли импульс (то есть в результате измерений может получаться любое число или какие-то дискретные величины)?
  • Момент импульса
  • Электрон обладает собственным магнитным моментом, т.е. полуцелым значениям j не отвечают орбитальные моменты, значению отвечает собственный момент импульса электрона и он называется спином.
  • Средние значения динамических переменных Мы уже видели, что теория отказывается предсказывать, что мы получим в результате измерения той или иной величины, она предсказывает лишь вероятности того, что будет получено то или иное значение
  • Изменение средних со временем Если состояние меняется со временем, это означает, что среднее значение тоже может меняться со временем
  • Атом водорода. Частица в центрально симметричном поле
  • Система тождественных частиц Принцип Паули гласит, что два фермиона не могут находиться в одном и том же состоянии.
  • Квантовая статистика Ели мы при абсолютном нуле температуры будем кидать бозоны в одну энергетическую яму, а фермионы в другую, то картины будут различными: фермионы будут занимать различные энергетические уровни, а бозоны – первый.
  • Равновесное электромагнитное излучение в полости

    Твёрдое тело

  • Классическая теория теплоёмкости Твёрдое тело может быть смоделировано частицами, которые колеблются относительно положения равновесия. Частицы в узлах решётки сидят и при нагревании колеблются, поэтому простейшая модель такая: частица массы m привязана пружинкой жёсткости k к положению равновесия.
  • Дебаевская теория Моделью нашего твёрдого тела будет сплошное упругое тело. Тогда тепловое возмущение будет представляться распространением возмущения, то есть стоячими звуковыми волнами
  • Решётка Браве. Обратная решётка электроны в твёрдом теле уже не принадлежат атомам, каждый электрон – житель всей этой решётки, волновая функция электрона размазана по всему образцу.
  • Зоны энергии Электрон в твёрдом теле заведомо находится в связанном состоянии, согласно общим положениям квантовой теории его энергия должна квантоваться, то есть собственные значения гамильтониана должны быть дискретны
  • Уравнения движения электронов в твёрдом теле
  • Проводимость твёрдых тел
  • Проводники, полупроводники и изоляторы

    Прикладная математика и физика

    Электромагнитное взаимодействие

Решение задач по физике, электротехнике, математике, информатике История искусства