Свойства комплексных чисел

Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач

Физика решение задач
Задачи контрольной
Молекулярная физика
Электpостатика
Закон Кулона
Потенциал
Основные законы постоянного
тока
Физика атомного ядра
Электротехнические материалы
Электромагнетизм
Электромагнитное
взаимодействие
Квантооптические явления
Оптика
Волновая оптика
Теория аберрации Стокса
Физические основы механики
Молекулярная физика
и термодинамика
Молекулярно-кинетическая
теория
Математика решение задач
Математика Задачи
Комплексные числа
Дифференциальное и
интегральное исчисление
Интегралы
Основные задачи на прямую
и плоскость
Векторная алгебра
Исследование функции
и построение графика
Производная функции
Свойства комплексных чисел
Алгебраические уравнения
Одночлены и многочлены
Высшая математика в экономике
Линейные уравнения
Понятие множества
История искусства
Послевоенный дизайн
Современные интерьеры
общественных зданий
Эмоциональный потенциал
архитектуры
Об условном развитии
пространства
О масштабе и образе
Форма, материал, цвет
О  компонентах интерьера
Язык архитектуры
Дизайн архитектурной среды
Стиль модерн Ар Нуво
Промышленные выставки
Искусство Западная Европа
Искусство Россия
Архитектура и скульптура
Живопись Россия
Импрессионизм
Эпоха Возрождения
Искусство Испании
Искусство Голландии
Европа и Россия XVIII век
Формирование дизайна
Информатика
Накопители на жестких дисках
Локальная сеть

Построение поля комплексных чисел

Пусть $ {z_1=2-3i}$ , $ {z_2=1+4i}$ .

Изображение комплексных чисел. Модуль и аргумент комплексного числа

Изобразим на комплексной плоскости числа $ {z_1=2+i}$ , $ {z_2=3i}$ , $ {z_3=
-3+2i}$ , $ {z_4=-1-i}$ ,

Найдите модуль и аргумент комплексных чисел: $ {z_1=-1+i}$ , $ {z_2=4}$ , $ {z_3=-\frac12-\frac{\sqrt3}2}i$ , $ {z_4=5i}$ , $ {z_5=-2-3i}$

Электротехника примеры расчета цепей и лабораторные работы. http://mirkasflur.ru/ Математика решение задач

Тригонометрическая форма комплексного числа

Запишите в тригонометрической форме числа $ {z_1=2+2i}$ , $ {z_2=-i}$ , $ {z_3=\sqrt3-i}$ , $ {z_4=5}$ .

Вычислите $ z^6$ , если $ {z=1-i}$ .

Показательная форма комплексного числа

Пусть $ z=-1+i$ . Напишите показательную форму числа $ z$ .

Извлечение корня из комплексного числа

Найдите корни уравнения $ {z^4=-1}$ .

Решите уравнение $ {(1+i)x^2+(1+3i)x-8+6i=0}$ .

Рассмотрим функцию

$ f(x)=\dfrac{1}{x-1}$

$ f(x)=e^{\frac{1}{x}}$

$ f(x)=\dfrac{1}{x}\ln x$

$ f(x)=\dfrac{x}{2}+\dfrac{1}{\sqrt{x}}$

$ f(x)=x^2+\frac{1}{x}$

$ f(x)=\sin x+e^{-x}$

$ f(x)=2\sqrt{x^2+x+1}-x$

$ f(x)=\dfrac{1}{x}\sin x^2+x$

График функции $ f(x)=\sin\dfrac{1}{x}$ не имеет при $ x=0$ вертикальной асимптоты

Прямая $ x=0$ не является вертикальной асимптотой графика функции $ f(x)=\dfrac{1}{x}\sin\dfrac{1}{x}$

График функции $ f(x)=1+\dfrac{1}{x-1}$ имеет горизонтальную асимптоту $ y=1$ как при $ x\to+\infty$, так и при $ x\to-\infty$

Линейные пространства и преобразования

Пусть $ L$ -- линейное пространство всех многочленов с веществеными коэффициентами. Покажем, что в этом пространстве базис не существует.

Пусть $ L$  -- двумерное векторное пространство, то есть множество векторов плоскости

Пусть $ L$  -- двумерное векторное пространство, $ \mathcal{A}$  -- поворот вектора по часовой стрелке на угол $ {\varphi}$

Пусть $ L$  -- двумерное векторное пространство, $ l$  -- некоторая прямая, проходящая через начало координат

Пусть $ L$  -- пространство всех многочленов, $ \mathcal{A}$  -- преобразование, которое переводит вектор из $ L$ , то есть многочлен, в производную этого многочлена, которая естественно является многочленом, то есть вектором из $ L$

Пусть $ L$  -- $ n$ -мерное линейное пространство, Выберем в этом пространстве базис $ {e_1,\,e_2,\ldots,\,e_n}$ .

Решение задач по физике, электротехнике, математике, информатике История искусства