Производная функции

Математика лекции задачи Лекции по электротехнике Теория машин и механизмов Машиностроительное черчение Современные интерьеры архитектура дизайн История искусства Информатика Физика решение задач

Физика решение задач
Задачи контрольной
Молекулярная физика
Электpостатика
Закон Кулона
Потенциал
Основные законы постоянного
тока
Физика атомного ядра
Электротехнические материалы
Электромагнетизм
Электромагнитное
взаимодействие
Квантооптические явления
Оптика
Волновая оптика
Теория аберрации Стокса
Физические основы механики
Молекулярная физика
и термодинамика
Молекулярно-кинетическая
теория
Математика решение задач
Математика Задачи
Комплексные числа
Дифференциальное и
интегральное исчисление
Интегралы
Основные задачи на прямую
и плоскость
Векторная алгебра
Исследование функции
и построение графика
Производная функции
Свойства комплексных чисел
Алгебраические уравнения
Одночлены и многочлены
Высшая математика в экономике
Линейные уравнения
Понятие множества
История искусства
Послевоенный дизайн
Современные интерьеры
общественных зданий
Эмоциональный потенциал
архитектуры
Об условном развитии
пространства
О масштабе и образе
Форма, материал, цвет
О  компонентах интерьера
Язык архитектуры
Дизайн архитектурной среды
Стиль модерн Ар Нуво
Промышленные выставки
Искусство Западная Европа
Искусство Россия
Архитектура и скульптура
Живопись Россия
Импрессионизм
Эпоха Возрождения
Искусство Испании
Искусство Голландии
Европа и Россия XVIII век
Формирование дизайна
Информатика
Накопители на жестких дисках
Локальная сеть

Производная

Пусть $ f(x)=\vert x\vert$ и $ x_0=0$. Вычислим односторонние производные $ f'_+(0)$ и $ f'_-(0)$

Рассмотрим линейную функцию $ y=f(x)=kx+b$

Производные некоторых элементарных функций

Найдём производную функции $\displaystyle f(x)=\left\{\begin{array}{ll}
x^2\sin\dfrac{1}{x},&\mbox{ при }x\ne0;\\
0,&\mbox{ при }x=0.
\end{array}\right.
$

Найдём производную функции $ f(x)=\mathop{\rm arctg}\nolimits x$.

Найдём производную функции $ f(x)=a^x$ ($ a>0,\ a\ne1$).

 

Найдём производную функции $ {f(x){=}\arcsin x}$

Найдём производную гиперболического котангенса $ \mathop{\rm cth}\nolimits x=\dfrac{\mathop{\rm ch}\nolimits x}{\mathop{\rm sh}\nolimits x}$

Найдём производную функции $\displaystyle f(x)=\mathop{\rm arctg}\nolimits \dfrac{1}{x},$ при $\displaystyle x\ne0.$

Аналогично находится производная гиперболического косинуса $ {y=\mathop{\rm ch}\nolimits x=
\frac{1}{2}(e^x+e^{-x})}$

Производная композиции

Пусть $ y=\sin2x$, то есть $ y=\sin u$, где $ u=2x$: данная функция представлена в виде композиции функций $ \sin u$ и $ 2x$.

Найдём производную функции $ y=\cos^52x$.

Решение квадратных уравнений с вещественными коэффициентами

Решите уравнение $ {x^2+2x+5=0}$ .

Символ суммирования

Сводка основных результатов о производных

Производные высших порядков

Рассмотрим функцию $ y=f(x)=\sin x$.

Найдём вторую производную функции $ f(x)=\sin^3x$

Производные функции, заданной параметрически

Пусть зависимость между $ x$ и $ y$ задана параметрически следующими формулами: $\displaystyle x=\ln(1+t^2); y=\mathop{\rm arctg}\nolimits t.$

Найдём выражение для второй производной $ y''_{xx}$ через параметр $ t$.

Найдём вторую производную $ y''_{xx}$ функции, заданной параметрически:

Производная функции, заданной неявно

Возьмём то же уравнение $ e^{xy}+x\cos y=0$ и найдём производную левой части

Производные и дифференциалы

Найдём производную функции

$ y=\cos(2x+dfrac{\pi}{4})$

$ y=\sin^2\ln^3(x^2+4)$

$ y=x^2e^{-2x}$

$ y=\sin^2\ln^3(x^2+4)$

Зависимость между $ x$ и $ y$ задана формулой $\displaystyle x^3y+xy^2+y^3-3x+5y+3=0.$

Найдём производную функции $ y=\cos(2x+dfrac{\pi}{4})$.

Четыре теоремы о дифференцируемых функциях

Функция $ f(x)=x^2$ имеет на отрезке $ [-1;1]$ точку минимума $ x_0=0$

Функция $ f(x)=\vert x\vert$ имеет на отрезке $ [-1;1]$ точку минимума $ x_0=0$

 

Рассмотрим при $ x\to\infty$ две бесконечно больших: $ f(x)=x+\sin x$ и $ g(x)=x$

Найдём предел $ \lim\limits_{x\to0}\dfrac{\sin x-x}{x^3}$.

Бесконечно малые и локально ограниченные величины и их свойства

При базе $ x\to+\infty$ рассмотрим две бесконечно малых величины: $ {\alpha}(x)=\dfrac{1}{x}$ и $ {\beta}(x)=\dfrac{1}{x^2}$

пример

 

 

Решение задач по физике, электротехнике, математике, информатике История искусства